Inference of geostatistical hyperparameters with the correlated pseudo-marginal method
نویسندگان
چکیده
We consider non-linear Bayesian inversion problems targeting the geostatistical hyperparameters of a random field describing hydrogeological or geophysical properties given data. This problem is particular importance in non-ergodic setting as there are no analytical upscaling relationships linking data to hyperparameters, such as, mean, standard deviation, and integral scales. Full local (typically involving many thousands unknowns) brings substantial computational challenges, that simplifying model assumptions (e.g., homogeneity ergodicity) typically made. To prevent errors resulting from simplified while also circumventing burden high-dimensional full inversions, we use pseudo-marginal Metropolis–Hastings algorithm treats latent variables. In this effects model, intractable likelihood observing estimated by Monte Carlo averaging over realizations field. increase efficiency method, low-variance approximations ratio obtained using sampling correlating samples used proposed current steps Markov chain. assess performance correlated method considering two representative diffusion-based wave-based physics, respectively, which infer (1) hydraulic conductivity fields apparent data-poor (2) fracture aperture borehole ground-penetrating radar (GPR) reflection more data-rich setting. For first test case, find generates similar estimates mean classical rejection sampling, an assuming ergodicity provides biased estimates. second well, computationally unfeasible leads
منابع مشابه
buckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Inference with Correlated Clusters
This paper introduces a method which permits valid inference given a finite number of heterogeneous, correlated clusters. It is common in empirical analysis to use inference methods which assume that each unit is independent. Panel data permit this assumption to be relaxed as it is possible to estimate the correlations across clusters and isolate the independent variation in each cluster for pr...
متن کاملPseudo-Marginal Slice Sampling
Markov chain Monte Carlo (MCMC) methods asymptotically sample from complex probability distributions. The pseudo-marginal MCMC framework only requires an unbiased estimator of the unnormalized probability distribution function to construct a Markov chain. However, the resulting chains are harder to tune to a target distribution than conventional MCMC, and the types of updates available are limi...
متن کاملBayesian Inference for Irreducible Diffusion Processes Using the Pseudo-Marginal Approach
In this article we examine two relatively new MCMC methods which allow for Bayesian inference in diffusion models. First, the Monte Carlo within Metropolis (MCWM) algorithm (O’Neil, Balding, Becker, Serola and Mollison, 2000) uses an importance sampling approximation for the likelihood and yields a limiting stationary distribution that can be made arbitrarily “close” to the posterior distributi...
متن کاملBayesian Inference for Geostatistical Regression Models
The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. Often, these standard criteria suggest models that are too complex in an effort to compensate for spatial correlation ignored in the se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Water Resources
سال: 2023
ISSN: ['1872-9657', '0309-1708']
DOI: https://doi.org/10.1016/j.advwatres.2023.104402